Modern practical convolutional neural networks for multivariate regression: Applications to NIR calibration
نویسندگان
چکیده
منابع مشابه
Constrained Structured Regression with Convolutional Neural Networks
Convolutional Neural Networks (CNNs) have recently emerged as the dominant model in computer vision. If provided with enough training data, they predict almost any visual quantity. In a discrete setting, such as classification, CNNs are not only able to predict a label but often predict a confidence in the form of a probability distribution over the output space. In continuous regression tasks,...
متن کاملNumerical Coordinate Regression with Convolutional Neural Networks
We study deep learning approaches to inferring numerical coordinates for points of interest in an input image. Existing convolutional neural network-based solutions to this problem either take a heatmap matching approach or regress to coordinates with a fully connected output layer. Neither of these approaches is ideal, since the former is not entirely differentiable, and the latter lacks inher...
متن کاملOn Calibration of Modern Neural Networks
Confidence calibration – the problem of predicting probability estimates representative of the true correctness likelihood – is important for classification models in many applications. We discover that modern neural networks, unlike those from a decade ago, are poorly calibrated. Through extensive experiments, we observe that depth, width, weight decay, and Batch Normalization are important fa...
متن کاملMultivariate Regression with Calibration
We propose a new method named calibrated multivariate regression (CMR) for fitting high dimensional multivariate regression models. Compared to existing methods, CMR calibrates the regularization for each regression task with respect to its noise level so that it is simultaneously tuning insensitive and achieves an improved finite-sample performance. Computationally, we develop an efficient smo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Chemometrics and Intelligent Laboratory Systems
سال: 2018
ISSN: 0169-7439
DOI: 10.1016/j.chemolab.2018.07.008